Design of experiments and network symmetry
Vasiliki Koutra (King's College London)
Designing experiments on networks challenges the traditional design approaches and classical assumptions, due to the interference among the interconnected experimental units as well as the design size. We suggest a novel algorithmic approach for obtaining efficient designs on networks within a practical time frame, by utilising the network topology and particularly its symmetries. We show that the decomposition of the graph based on its symmetries can substantially reduce the search time while maintaining the design efficiency at a sufficient level. This technique can be regarded as an essential step in the search for an optimal design on experimental units that are connected in a large network. We discuss several synthetic and real-world examples.